
Towards efficient service provisioning in Edge
Computing

*
*
*
*
*

Abstract—The growing demand for digital services has made
the use of Edge Computing increasingly necessary. However,
for its efficient usage, mechanisms that take into account the
distributed nature of its components are needed. Thus, this paper
indicates 3 challenges for the efficient use of Edge Computing.
The first is the forwarding of the user to the nearest server. The
second is the instantiation of services considering the volume
and origin of demand, and the resources needed to meet it. The
third is that the request chaining should be done considering
the infrastructure topology. To address the first challenge, it
implements Topology Aware DNS. A proposal to deal with the
second challenge, and main contribution of the research, is
presented in sequence. For this, it formulates 5 indicators that
synthesize all the necessary information to describe the state
of the infrastructure and the services provided by it. Then, it
indicates how these indicators can be used by a Machine Learning
algorithm to perform the orchestration of the allocation of
instances of these services. Additionally, it also indicates possible
strategies to address the third challenge. The analysis of the
experiments described in this paper focuses on evaluating the
benefit of the approach that addresses the first challenge. The
results obtained show that 76.99% of the requests were optimally
or well answered, and only 1.51% were classified as bad. Future
work will address the evaluation of the proposal that is targeted
to address the second challenge.

Index Terms—efficiency in edge computing, machine learning,
resource allocation

I. INTRODUCTION

Ubiquitous computing is a reality today. Through the use of
smartphones it is possible to view multimedia content, perform
financial transactions, and access numerous public services.
The processing power that is built into these devices enables
the capture and display of high quality video. Additionally,
the included communication networks provide high bandwidth
Internet access. In parallel, the use of IoT has been widely
used in tracking the delivery of products in online commerce,
as well as in agriculture, industry and the environment mon-
itoring. Moreover, a resource that has been explored in the
implementation of smart cities is the processing of images
from monitoring cameras to improve the response time of
services to attend incidents in urban centers.

Given this scenario, there is an increasing demand for more
dynamic and interactive services, accentuating the need for a
computing infrastructure adapted to this new context. Thus,

thanks to *

infrastructures with elements closer to the network edge have
been developed, known as Edge Computing. This strategy
reduces latency in access, improving the responsiveness of
these services. The use of this type of infrastructure is usually
done in a complementary way to Cloud Computing, allowing
to improve the logistics of service deployment in the infras-
tructure in order to maximize the Quality of Experience to the
user.

Hence, the need for research on the optimization of ser-
vice orchestration in distributed infrastructures is identified.
Although similar issues have already been explored in Cloud
Computing, it is distinguished by the presence of a less central-
ized infrastructure, associated with the innovations provided
by container orchestration platforms (Kubernetes) and their
integration with SDNs.

Fig. 1. RNP’s network infrastructure (IPE network)

In order to contribute to this research, the present work is
based on the use case of the video publication and distribution
service developed to serve the academic community in Brazil,
the eduplay1. This service currently has content from more
than 350 universities and research institutions in Brazil. To
meet this demand, it has a network that covers the entire
Brazilian territory (figure 1). Over this infrastructure, it has

1http://eduplay.rnp.br



deployed a mesh of edge servers through which it distributes
the content of this video platform, with a monthly rate of
approximately 50 million requests, totaling more than 12
terabytes of delivered content. This service is a result of the
research published in [1] [2] [3].

Therefore, this paper aims to present the first results ob-
tained from the ongoing research that aims to maximize the
efficiency of service deployment using Edge Computing. The
contributions of this work are indicated below, as well as the
structure of the paper.

Initially, we mapped out 3 challenges for the efficient
delivery of services in an Edge Computing infrastructure
(section II), and found solutions for them. The first one,
which is Topology Aware DNS Description, can use a DNS-
based solution (with ECS) [4], which is combined with HTTP
Redirect (III). The presentation of a novel proposal to address
the second challenge based on synthesizing the state of the
environment into 5 indicators to parameterize the orchestration
of service instantiation through ML (section IV). The mapping
of possible strategies to address the third challenge (section
V). Analysis of the results obtained in an experiment to
evaluate the use of Topology Aware DNS in addressing the
first challenge (section VI). Finally, the VIII section presents
the conclusions and future work.

II. CHALLENGES FOR EFFICIENCY IN EDGE COMPUTING

In general, the challenges to efficiently deploy a service in
an Edge Computing infrastructure are associated with three
fundamental aspects:

The first challenge (C1) is about ensuring that the client
connects (establishes the TCP connection) to the element
closest to it, resulting in the lowest latency of the com-
munication. Because, besides giving a better perception of
responsiveness, it allows maximizing the throughput between
these. In addition, it is important to ensure that it has the
availability to meet the requests. Thus, it is necessary that these
mechanisms can act in an integrated way with the orchestration
platform so that the necessary precision and dynamism can be
obtained.

The second challenge (C2) represents the ability to manage
the allocation of the instances of the components that pro-
vide the services, considering: the volume, the origin of the
demand and which resources/contents/services are accessed.
The differential in the context of Edge Computing is that
the greater distribution of elements reflects directly on the
spatial variation of demand, since the origin of requests can
alternate between micro-regions, which can be mapped as a
single region in Cloud Computing contexts. So it’ s necessary
to have a mechanism capable of identifying these behaviors
and mapping them into allocation models that allow finding
the trade-off between QoE and resource usage optimization.

The last challenge (C3) aims to orchestrate the communi-
cation between the various elements used to serve the request,
aiming to optimize the communication between them. Exam-
ple, in the video distribution scenario, a request is initially
served by a tcp/http proxy service. Then, it makes a request

to the cache service; this one, in turn, if it does not have
the content in its cache, requests to another cache server or
directly to the source. Hence, it is not enough that the client
request routing is optimized, the communication between all
the elements that compose the service is optimized, consider-
ing the mesh of components distributed throughout the Edge
Computing infrastructure.

III. COMBINING DNS WITH HTTP TO MEET CHALLENGE 1

One of the fundamental steps to address challenge 1 is the
choice of the mechanism that will forward the client’s request
to the server designated to serve it. In general, three techniques
can be used: Anycast, DNS, or HTTP Redirect.

The most efficient techniques in relation to network over-
head is Anycast. However, its implementation depends on
how the infrastructure is built, and the establishment of traffic
exchange agreements with adjacent networks.

The DNS approach, meanwhile, allows for scenarios in
which the use of Anycast is not feasible. That is, in cases
in which it is not possible to apply these optimizations in the
routing process.

HTTP Redirect, on the other hand, allows for more precise
client identification. Nevertheless, it represents an overhead in
the initialization of the communication (compared to Anycast
or DNS). This approach is useful in cases where the content
to be transmitted is high volume (such as video).

In [5] it is discussed how this challenge is addressed by
the Hyper-Giants of the Internet (Akamai, Amazon, Facebook,
Google, Microsfot and Netflix), indicating proposals and re-
sulting impacts.

Thus, the choice of strategy depends on several factors,
including the feasibility of implementation, associated with
the mechanisms supported by the infrastructure provider.

A. DNS-ECS for small, HTTP Redirect for big

Given the context in which this research is focused, the
approach based on combining DNS with HTTP Redirect was
chosen.

DNS is used to provide access to services characterized by
multiple contents, but that each content has a low volume of
data, such as browsing a website. To improve the accuracy in
discovering the user’s location in this case, Topology Aware
DNS was developed, described in the following section (III-B).

HTTP Redirect is used to handle requests associated with a
large volume of data, such as in the case of video streaming
access, as described in [3]. The choice of this approach aims
to maximize the quality of user experience given that latency
in communication has a significant impact on the transfer rate
of this content.

B. Topology Aware DNS Operation

Topology Aware DNS is composed of three sub-modules:
Topology Discovery, Service Discovery and Lookup Engine.

Topology Discovery is responsible for: (i) creating a graph
of the topology using a mapping of the links that make up the
infrastructure and (ii) a binary search structure of IP addresses



using a geolocation database of IP address blocks as reference.
Service Discovery queries the monitoring system to identify
which nodes have registered services and their availability
level.

The Lookup Engine in turn is used in DNS requests to
select the node and the corresponding IP address that will be
used as a response. To do this it checks if the request has the
EDNS Client Subnet information to use as a client address
reference. If not, it uses the IP address of the DNS Resolver
that forwarded the request. Based on this address, it defines
the location of the user using the Topology Discovery search
engine. Next, it queries Service Discovery to obtain the list of
nodes that have the desired service and that have acceptable
availability to serve the requests. Based on this information
and the topology graph, it selects the node closest to the user’s
location using the Dijkstra algorithm. Finally, it returns the
node’s IP address information as a response.

C. Intra Node Load Balance

In a complementary way, it is important to use load
balancing mechanisms within the node. The traditional way
to implement this function is through network equipment,
using VIP mechanisms. However, recent research has pro-
posed to optimize this issue through the use of SDN, called
fullstack-SDN [6]. The idea is to use SDN packet forwarding
mechanisms in an integrated way with service orchestration
functionalities to direct packets directly to the desired Pod via
flow mapping. To implement these mechanisms, CNIs can be
used to act in an integrated way with SDN controllers.

However, as in the context of the use case, the nodes that
make up Edge Computing are distributed virtual machines
using K3S. Thus, this aspect was implemented through the
use of the ingress service.

IV. SYNTHESIZED INDICATORS TO DEAL CHALLENGE 2

The main research contribution associated with this paper
is proposed to address challenge 2. To this end, it uses ML to
perform the orchestration of the instances. The differential is
in the proposition of 5 indicators that synthesize all relevant
aspects for parameterization of the ML algorithm. The goal is
to avoid the problem known as “curse of dimensionality” [7].

For this, the concepts of Measurement, Metrics and Indica-
tors for software engineering are used [8]. Briefly, a Measure
represents a quantitative indication of the extent, quantity,
capacity, or size of some attribute. A Metric relates a set of
Measures. The Indicator in turn is the combination of metrics
that allow the behavior/performance of the observed element
to be analyzed. That is, it can be the correlation between
several instants of the same metric, showing its behavior,
or the combination between different metrics, to identify the
influence that the measured attributes have on each other.

Furthermore, some collected data can be used to represent
the context of the monitored attributes, in order to be used for
the classification of measurements. For example, the mapping
of IP address blocks can be used to classify a request to a
service region. This information can be obtained through a

BGP advertisement agent or by processing geolocation tables.
Such information is called Measurement Metadata and is used
as labels by monitoring mechanisms.

A. Measures and Metadata

The Measures to be collected are essentially information
extracted from the data collected from the infrastructure or the
services that are instantiated in it. This data are the result of
state monitoring, which are already expressed in Measures, or
the logs from which Measures are extracted either directly (e.g.
a value contained in the log) or by counting the number of logs
with a certain characteristic, such as successfully answered
requests.

B. Metrics

After the measures are collected, the data processing step
is started for the production of Metrics. For this, formulas are
used to correlate the previously extracted measures.

1) Proportion of use of computing resources: Represents
how much of the total available of a resource (CPU, RAM,
HD, Net, Load1 and Link) is being used, expressed as a
percentage.

2) Transfer rate: Quantifies the amount of data transmitted
over a period of time. Example, the rate of bytes transferred
(and received) in one second is represented by TX (and RX).

3) Requests rate: Summarizes the amount of requests re-
ceived by the application in a period of time (in minutes).

4) RTT and SRT Percentile: This Metric uses the concept
of percentile to determine the reference value for analyzing the
Network Latency (RTT) and Server Response Time response
time (SRT). The idea is to identify the most appropriate
value to represent samples in optimal conditions as well as
to represent a deteriorated condition.

C. Indicators

The last stage of data preparation is the production of Indi-
cators. The benefit in the use of indicators is that, regardless
of which algorithm is used for decision making, the reduction
in the number of variables to be used to calculate the decision
represents a reduction in the cost of this operation, since it
minimizes the complexity of ML operations.

Another important aspect is that it allows the association
of the values of the Measures and Metrics that represent the
attributes in their natural units of magnitude into appropriate
quantifiers to be used by the ML algorithms. Example, a
Reinforcement Learning algorithm needs to receive a value
that represents the reward for the action taken. But for that,
it needs a formula that associates the throughput of sending
data to clients, the use of computational resources and the
number of problem requests. In addition, the calculation of
the indicator needs to be adjusted to suit the semantic aspects
of the service, including its operational cost, through financial
variables. In order to obtain results more adherent to the
expected goals.



1) Availability: Reflects the condition of the computa-
tional resource that represents the major constraint (among
resources) of a given element at a specific instant. This can be
used both to represent the state of the server on which the ap-
plications that implement the services are instantiated, and also
the element that represents the instance (e.g. container/pod) of
the application that composes the service.

The objective of this metric is to allow the algorithm, instead
of having to deal with all the Resource Usage Measures, to
evaluate only the one that represents the biggest limitation at
that moment.

To calculate this metric the Resource Usage Ratio Metrics
are used through the following expression:

Availability = 100 −max{CPU,RAM,HD,Net, Load} (1)

2) Demand: Indicator computed based on the rate of data
transmitted exclusively to clients. This means that values
resulting from demand generated by internal mechanisms, such
as cache propagation between nodes, should be disregarded.
Furthermore, a classification must be performed according to
the coverage region to which the client that made the request
belongs. In this way, it allows the identification of the origin
of the demand and helps in the definition of which location
needs the instantiation of a service element.

In [9] studies that exploit the rate of requests to measure de-
mand are indicated. However, since the use case is associated
with videos, the network is the computational resource that
is most in demand. Thus, the attribute used to measure this
aspect is data volume. Thus, the following equation is used to
quantify the demand indicator.

Demandregion =
∑
n

TXn|n ∈ region (2)

3) Cost: Cost summarizes the operating cost of an instance
of a given service into a single measurable value. Measures
used are also cpu, memory, storage and network usage. How-
ever, the composition of this indicator is not about the available
resources, but rather the nominal value of usage, e.g. in bytes
of memory used.

Also, to aggregate the value of each resource fairly, a
weight parameter is used for each type of resource. Because
even though they are measured in similar units of magnitude,
they represent different operating costs. This parameterization
should be estimated for each usage scenario.

Thus, the argument M indicates the Measure that quantifies
the use of the resource and W indicates the weight associated
with the operational cost of allocating this resource.

Cost = Mcpu.Wcpu+Mram.Wram+Mhd.Whd+Mnet.Wnet+Mload.Wload (3)

4) Utility: The utility indicator allows to measure the
benefit of the instantiation of an element at a given location.
The computation of this indicator is different for each service,
because the impact of each one’s performance is different in
the system.

In the case of the caching service, the main factor that
determines the utility is the amount of requests that are met
through the use of content already stored locally. That is, the
difference between the rate of transmitted data and the rate

of received data. This approach is more suitable than using
cache hit because the cost of operation is related to the volume
of data. Thus, it was identified that the formulation of this
Identifier is best represented by the following equation.

Utilitycache = (TXcache − RXcache).Wnet (4)

The usefulness of the proxy service can be measured by
the reduction of network latency to the client. Since it is a
factor that directly affects the transmission rate that the client
reaches due to the TCP sliding window effect. For this, the
latency metric (RTT) is used considering the P50th percentile,
in conjunction with the rate of client requests, since it directly
reflects the use of this service, hence its utility.

The associated weight to calculate the utility can be based
on the impact of the SLA (Service Level Agreement) or the
performance expectation, represented by WRTT . Essentially,
it serves as a weight to calculate the trade-off between the
cost of instantiation of the service and its benefit at a given
location.

Utilityproxy =
1

RTTp50
.reqok.WRTT (5)

D. Perturbation
The disturbance indicator seeks to measure the impact of

problematic conditions on a given element, which can be used
for either an instance of the TCP/HTTP proxy service or the
cache service. The value is represented by the sum between: (i)
the rate between the server response time (SRT) of the P90th
percentile and the P50th percentile and (ii) the rate between
the requests handled with error and those handled successfully.

Perturbation =
SRTp90

SRTp50

+
(reqerr + 1)

reqok

(6)

This indicator is used as a penalty factor in the reinforce-
ment function by the ML algorithm.

E. Machine Learning Modeling
Using these indicators to take action in orchestration is

through the use of a Deep Reinforcement Learning (DRL)
algorithm. This strategy has been indicated in recent studies
[10] [11] [12]. Furthermore, a multi-agent approach is used.
That is, each agent is responsible for making decisions in a
restricted scope of action. This way, it is possible to reduce
the amount of information needed to represent the state of
the environment in which the agent will act and amount of
possible actions. This strategy aims to align with the concept
defined in [13] “Ignorance is a blessing” when exploring multi-
agent approach. So, each agent, has only the environment in-
formation of its own node and some parameters that represent
the neighboring (directly connected) nodes, according to the
following representation.

States =



Node Availability
Availability of each service instance on the node
Demand from the service regions bound to the node
Number of service instances in the node
Neighborhood map (directly connected nodes), relating:
- Availability of the neighbor node
- Proportion of use of the interconnection link
- Demand of the neighboring service region
- Number of instances of the service in the neighboring node

Actions =

 Add a new service instance in the node
Remove a service instance in the node
Make no changes

Reinforcement =
service∑

i

(
Ui

C.(1 + Pi)

)

(7)



V. STRATEGIES TO ADDRESS CHALLENGE 3

The strategy in operation in the use case of this paper
applies the model described in [3]. In short, it uses the strategy
of recursive http requests between the nodes of the content
distribution network. The routing path is defined by an element
called Maestro. This generates a URL in which the necessary
information is encoded so that the elements that compose the
service can reach the source of the content.

As part of the evolution of this strategy, it was proposed in
[14] mechanisms for integration with SDNs. Thus, it presents
an architecture that creates an abstraction layer between the
CDN and the network infrastructure through an extension to
the ALTO protocol [15], the ALTO-Intents. The goal is to
allow, in addition to the consumption of information provided
by the infrastructure through ALTO’s Network Map and Cost
Map interfaces, to request the creation of virtual links (Intents).

But more recent research, such as [6], it is noted that the
Service Mesh approach is a strategy that addresses this issue
more closely to current infrastructure orchestration patterns.

VI. EVALUATION OF THE TOPOLOGY AWARE DNS

The Topology Aware DNS evaluation aims to identify the
benefit of using this mechanism as a complementary strategy
to the current service. Because until now, the mechanisms
implemented are intended only for video distribution, using
HTTP Redirect.

A. Experimentation scenario

To perform the tests, Topology Aware DNS was instantiated
on two servers, defined as Authoritative DNS of a domain that
was set just for this experiment. A test file was also placed in
each of the servers positioned in each PoP of the infrastructure
indicated in figure 1, which were registered in the Topology
Aware DNS as available to answer the requests of this domain.
Additionally, a call to this file was included in the eduplay
page. Thus, each user that will access the service will request
this file, going through the DNS query process.

The geolocation information of the IP address blocks was
extracted from the free developer version of IP2Location2.
For optimization purposes, a clustering process of consecutive
address blocks belonging to the same country was performed,
with the exception of Brazil, since the infrastructure nodes
are located in this country. In this case, the clustering was
performed based on the federal states that make up the country.
Thus, after this processing, the 3,012,788 IPv4 address blocks
were grouped into 281,868. Likewise, the 4,334,275 IPv6
address blocks were grouped into 570,646. The link map is
based on the infrastructure topology, which contains 27 PoPs.

The data collection period was 30 days. 83,680 DNS type
A (IPv4) requests were registered, coming from 63 countries.
The total number of http requests was 35,629, also from 63
countries. The response time to requests was 244 microseconds
in the 50th percentile, and 459 microseconds in the 99th
percentile.

2https://lite.ip2location.com

B. Analysis of Results

The first set of data analysis was in characterizing the
use of the ECS. It was identified that only 17% of the total
DNS requests contained the client origin information (ECS).
Of these requests, 94.55% came from Google’s Recursive
DNS. Of which 84.65% came from Brazilian clients. Another
characteristic is that 4.91% of these requests come from
networks with up to 256 addresses in its allocation block (class
C). 79.90% are from clients that belong to networks that have
between 256 and 65536, and 15.19% with networks higher
than 65536.

Although the ECS requests do not represent a significant
value, the nearest node selection accuracy factor was very
positive. 41.46% of the http requests were forwarded to the
closest server, and another 35.52% to servers in adjacent
regions. Thus, the precision factor for 76.99% of the requests
was optimum or good. Another 21.47% can be classified as
average, and only 1.51% as poor (figure 2).

poor
1,5%
average
21,5%

good
35,5%

optimum
41,5%

Fig. 2. Accuracy of node selection

To evaluate the advantage of this matter, a complementary
test was performed to quantify the impact on content access
from servers in different regions. In short, http requests were
performed, downloading a 3 megabyte file, measuring the
transfer rate. Subsequently, the download speed was compared,
and associated access latency with the server. The results can
be seen in the figure 3.

location

0

25

50

75

100

same location adjacent location average distance far distance

Latency (ms) Transfer Rate (mbps)

Fig. 3. Impact of latency on the transfer rate

The servers in the user’s region have an average latency of
4ms, and achieved transfer rates of 86.4 mbps. When accessing
the server in an adjacent network, the latency is 23ms and the
rate is 53 mbps. At the server at an intermediate point, with



31 ms latency, the rate is 24 mbps. Finally, at the one further
away, with latency of 61 ms, the rate is only 15.2 mbps.

VII. RELATED WORK

The search for greater efficiency in edge computing has
been the subject of many researches. One example is the work
presented in [16]‘. This aims to minimize network latency in
accessing services in Smart Cities using elements orchestrated
in Kubernetes. For this, an extension to the standard Kuber-
netes Scheduler is proposed, in which it includes among the
decision parameters, the measurements of RTT (Round Trip
Time) and bandwidth between nodes. The results showed an
80% reduction in latency when accessing these services.

In this same vein, in [17] a strategy is proposed for
the allocation scheduler aiming to address aspects of edge
infrastructure. It defines two components: (i) the classifier,
responsible for receiving all the scheduling requests and clas-
sifying them according to predefined metrics and (ii) the Edge
Scheduler, responsible for selecting the available locations to
deploy containers that are closest to the clients.

In parallel, it is noted that more recent efforts have been
focused mainly on exploring the use of Machine Learning
to analyze the various variables to be weighted in decision
making. In [18] Deep Reinforcement Learning is used to
search for the balance point between resource usage and
maintaining Quality of Service in a data center. The results
obtained showed significant gains in energy savings, improv-
ing efficiency by 47.88%.

VIII. CONCLUSIONS AND FUTURE WORK

The great demand for digital services in the various seg-
ments, both in logistics as well as in service offering, has
demanded the use of infrastructures with lower network la-
tency. With this, the need for Edge Computing becomes more
evident.

However, as highlighted in this paper, the efficient use of
this kind of infrastructure has several challenges. Therefore,
this paper aims to contribute to the identification of solutions
that can address these challenges.

To achieve this, it presented Topology Aware DNS as an
alternative to address the first indicated challenge C1. The
main contribution of this paper is the proposal to address
challenge C2. This is based on the use of 5 indicators that
synthesize the information needed for an ML algorithm to
manage the allocation of instances needed to meet the demand
of a service offered on an Edge Computing. Furthermore, it
also indicates possible routes proposed in other research to
address the third challenge C3.

The evaluation of the approach used to address the first
challenge was performed through a set of experiments con-
ducted in a real environment. The results obtained showed
that 76.99% of the requests were answered by nodes located
in regions classified as optimal or good.

As a continuation of this work, the elements that make
use of the indicators proposed in the section IV are being
implemented to perform the allocation of the components
efficiently.

REFERENCES

[1] D. C. Uchoa, R. Kulesza, R. Matushima, S. Kopp, G. Bressan, and
R. M. Silveira, “A management platform for multimedia distribution in
country-wide networks,” in 2007 Latin American Network Operations
and Management Symposium, 2007, pp. 20–27.

[2] D. C. Uchôa, S. Kopp, H. M. Pimentel, R. Matushima, and R. M.
Silveira, “An overlay application-layer multicast infrastructure,” in 2009
International Conference on Advanced Information Networking and
Applications, 2009, pp. 233–240.

[3] H. M. Pimentel, S. Kopp, M. A. Simplicio Jr., R. M. Silveira, and
G. Bressan, “Ocp: A protocol for secure communication in federated
content networks,” Computer Communications, vol. 68, pp. 47–60,
2015, security and Privacy in Unified Communications Challenges and
Solutions.

[4] C. Contavalli, W. van der Gaast, D. C. Lawrence, and W. Kumari, “Rfc
7871-client subnet in dns queries,” 2016.

[5] E. Pujol, I. Poese, J. Zerwas, G. Smaragdakis, and A. Feldmann,
“Steering hyper-giants’ traffic at scale,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, ser. CoNEXT ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 82–95.

[6] G. Antichi and G. Rétvári, “Full-stack sdn: The next big challenge?” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 48–54.

[7] R. Bellman, “Adaptive control processes; a guided tour, princeton univ,”
Press, NJ, 1961.

[8] R. S. Pressman et al., “A practitioner’s approach,” Software Engineering,
2010.

[9] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of
applications for resources provisioning in cloud,” Journal of Network
and Computer Applications, vol. 82, pp. 93–113, 2017.

[10] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud
service providers,” in 23rd Asia and South Pacific Design Automation
Conference, ASP-DAC 2018, Jeju, Korea (South), January 22-25, 2018.
IEEE, 2018, pp. 129–134.

[11] C. Bitsakos, I. Konstantinou, and N. Koziris, “Derp: A deep reinforce-
ment learning cloud system for elastic resource provisioning,” 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pp. 21–29, 2018.

[12] B. Du, C. Wu, and Z. Huang, “Learning resource allocation and
pricing for cloud profit maximization,” in Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence and Thirty-First In-
novative Applications of Artificial Intelligence Conference and Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence,
ser. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[13] E. Durfee, “Blissiful ignoreance: Knowing just enough to coordinate
well,” in Proc. of ICMAS-95, 1995, pp. 406–413.

[14] S. Kopp, M. P. Hernandez, L. T. Chigami, and R. M. Silveira, “Content
delivery networks integrated with software defined networks,” in Pro-
ceedings of the 23rd Brazillian Symposium on Multimedia and the Web,
ser. WebMedia ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 89–92.

[15] R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W. Roome,
S. Shalunov, and R. Woundy, “Application-layer traffic optimization
(alto) protocol,” RFC 7285, 2014.

[16] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019, pp. 351–359.

[17] W. Wong, A. Zavodovski, P. Zhou, and J. Kangasharju, “Container
deployment strategy for edge networking,” in Proceedings of the 4th
Workshop on Middleware for Edge Clouds & Cloudlets, 2019, pp. 1–6.

[18] M. Cheng, J. Li, P. Bogdan, and S. Nazarian, “H2o-cloud: A resource
and quality of service-aware task scheduling framework for warehouse-
scale data centers,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2925–2937, 2019.

[19] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “Drl-scheduling: An
intelligent qos-aware job scheduling framework for applications in
clouds,” IEEE Access, vol. 6, pp. 55 112–55 125, 2018.


